Matter Linux Energy Management Example#
An example showing the use of CHIP on the Linux. The document will describe how to build and run CHIP Linux Energy Management Example on Raspberry Pi. This doc is tested on Ubuntu for Raspberry Pi Server 20.04 LTS (aarch64) and Ubuntu for Raspberry Pi Desktop 20.10 (aarch64)
To cross-compile this example on x64 host and run on NXP i.MX 8M Mini EVK, see the associated README document for details.
Building#
Install tool chain
$ sudo apt-get install git gcc g++ python pkg-config libssl-dev libdbus-1-dev libglib2.0-dev ninja-build python3-venv python3-dev unzip
Build the example application:
$ cd ~/connectedhomeip/examples/energy-management-app/linux $ git submodule update --init $ source third_party/connectedhomeip/scripts/activate.sh $ gn gen out/debug $ ninja -C out/debug
To delete generated executable, libraries and object files use:
$ cd ~/connectedhomeip/examples/energy-management-app/linux $ rm -rf out/
Build the example with pigweed RPC
$ cd ~/connectedhomeip/examples/energy-management-app/linux $ git submodule update --init $ source third_party/connectedhomeip/scripts/activate.sh $ gn gen out/debug --args='import("//with_pw_rpc.gni")' $ ninja -C out/debug
Commandline arguments#
--wifi
Enables WiFi management feature. Required for WiFi commissioning.
--thread
Enables Thread management feature, requires ot-br-posix dbus daemon running. Required for Thread commissioning.
--ble-device <interface id>
Use specific bluetooth interface for BLE advertisement and connections.
interface id
: the number afterhci
when listing BLE interfaces byhciconfig
command, for example,--ble-device 1
means usinghci1
interface. Default:0
.--application <evse | water-heater>
Emulate either an EVSE or Water Heater example.
--featureSet <feature map for Device Energy Management e.g. 0x7a>
Sets the run-time FeatureMap value for the Device Energy Management cluster. This allows the DEM cluster to support
PFR
orSFR
so that the full range of TC_DEM_2.x test cases can be exercised with this application.See the test-runner headers in the respective test script in src/python_testing/TC_DEM_2.x.py which have recommended values to use.
Running the Complete Example on Raspberry Pi 4#
If you want to test Echo protocol, please enable Echo handler
gn gen out/debug --args='chip_app_use_echo=true' ninja -C out/debug
Prerequisites
A Raspberry Pi 4 board
A USB Bluetooth Dongle, Ubuntu desktop will send Bluetooth advertisement, which will block CHIP from connecting via BLE. On Ubuntu server, you need to install
pi-bluetooth
via APT.Ubuntu 20.04 or newer image for ARM64 platform.
Building
Follow Building section of this document.
Running
[Optional] Plug USB Bluetooth dongle
Plug USB Bluetooth dongle and find its bluetooth device number. The number after
hci
is the bluetooth device number,1
in this example.$ hciconfig hci1: Type: Primary Bus: USB BD Address: 00:1A:7D:AA:BB:CC ACL MTU: 310:10 SCO MTU: 64:8 UP RUNNING PSCAN ISCAN RX bytes:20942 acl:1023 sco:0 events:1140 errors:0 TX bytes:16559 acl:1011 sco:0 commands:121 errors:0 hci0: Type: Primary Bus: UART BD Address: B8:27:EB:AA:BB:CC ACL MTU: 1021:8 SCO MTU: 64:1 UP RUNNING PSCAN ISCAN RX bytes:8609495 acl:14 sco:0 events:217484 errors:0 TX bytes:92185 acl:20 sco:0 commands:5259 errors:0
Run Linux Energy Management Example App
$ cd ~/connectedhomeip/examples/energy-management-app/linux $ sudo out/debug/chip-energy-management-app --ble-device [bluetooth device number] # In this example, the device we want to use is hci1 $ sudo out/debug/chip-energy-management-app --ble-device 1
Test the device using ChipDeviceController on your laptop / workstation etc.
Device Tracing#
Device tracing is available to analyze the device performance. To turn on tracing, build with RPC enabled. See Building with RPC enabled.
Obtain tracing json file.
$ ./{PIGWEED_REPO}/pw_trace_tokenized/py/pw_trace_tokenized/get_trace.py -s localhost:33000 \
-o {OUTPUT_FILE} -t {ELF_FILE} {PIGWEED_REPO}/pw_trace_tokenized/pw_trace_protos/trace_rpc.proto
Python Test Cases#
When you want to test this cluster you can use chip-repl or chip-tool by hand. CHIP-REPL is slightly easier to interact with when dealing with some of the complex structures.
There are several test scripts provided for EVSE (in src/python_testing):
TC_EEVSE_2_2
: This validates the primary functionalityTC_EEVSE_2_3
: This validates Get/Set/Clear target commandsTC_EEVSE_2_4
: This validates FaultsTC_EEVSE_2_5
: This validates EVSE diagnostic command (optional)TC_EEVSE_2_6
: This validates EVSE Forecast Adjustment with State Forecast Reporting feature functionalityTC_EEVSE_2_7
: This validates EVSE Constraints-based Adjustment with Power Forecast Reporting feature functionalityTC_EEVSE_2_8
: This validates EVSE Constraints-based Adjustment with State Forecast Reporting feature functionalityTC_EEVSE_2_9
: This validates EVSE Power or State Forecast Reporting feature functionality
These scripts require the use of Test Event Triggers via the GeneralDiagnostics
cluster on Endpoint 0. This requires an enableKey
(16 bytes) and a set of
reserved int64_t test event trigger codes.
By default the test event support is not enabled, and when compiling the example
app you need to add chip_enable_energy_evse_trigger=true
to the gn args.
$ gn gen out/debug --args='chip_enable_energy_evse_trigger=true'
$ ninja -C out/debug
Once the application is built you also need to tell it at runtime what the
chosen enable key is using the --enable-key
command line option.
$ ./chip-energy-management-app --enable-key 000102030405060708090a0b0c0d0e0f --application evse
Running the test cases:#
From the top-level of the connectedhomeip repo type:
Start the chip-energy-management-app:
rm -f evse.bin; out/debug/chip-energy-management-app --enable-key 000102030405060708090a0b0c0d0e0f --KVS evse.bin --featureSet $featureSet --application evse
where the $featureSet depends on the test being run:
TC_DEM_2_2.py: 0x01 // PA
TC_DEM_2_3.py: 0x3b // STA, PAU, FA, CON + (PFR | SFR)
TC_DEM_2_4.py: 0x3b // STA, PAU, FA, CON + (PFR | SFR)
TC_DEM_2_5.py: 0x3b // STA, PAU, FA, CON + PFR
TC_DEM_2_6.py: 0x3d // STA, PAU, FA, CON + SFR
TC_DEM_2_7.py: 0x3b // STA, PAU, FA, CON + PFR
TC_DEM_2_8.py: 0x3d // STA, PAU, FA, CON + SFR
TC_DEM_2_9.py: 0x3f // STA, PAU, FA, CON + PFR + SFR
where
PA - DEM.S.F00(PowerAdjustment)
PFR - DEM.S.F01(PowerForecastReporting)
SFR - DEM.S.F02(StateForecastReporting)
STA - DEM.S.F03(StartTimeAdjustment)
PAU - DEM.S.F04(Pausable)
FA - DEM.S.F05(ForecastAdjustment)
CON -DEM.S.F06(ConstraintBasedAdjustment)
Then run the test:
$ python src/python_testing/TC_EEVSE_2_2.py --endpoint 1 -m on-network -n 1234 -p 20202021 -d 3840 --hex-arg enableKey:000102030405060708090a0b0c0d0e0f
Note that the
--endpoint 1
must be used with the example, since the EVSE cluster is on endpoint 1. The--hex-arg enableKey:<key>
value must match the--enable-key <key>
used on chip-energy-management-app args.
The chip-energy-management-app will need to be stopped before running each test script as each test commissions the chip-energy-management-app in the first step. That is also why the evse.bin is deleted before running chip-energy-management-app as this is where the app stores the matter persistent data (e.g. fabric info).
CHIP-REPL Interaction#
See chip-repl documentation in Matter_REPL_Intro
Building chip-repl:#
$ ./build_python.sh -i <path_to_out_folder>
Activating python virtual env#
You need to repeat this step each time you start a new shell.
$ source <path_to_out_folder>/bin/activate
Interacting with CHIP-REPL and the example app#
Step 1: Launch the example app
$ ./chip-energy-management-app --enable-key 000102030405060708090a0b0c0d0e0f --application evse
Step 2: Launch CHIP-REPL
$ chip-repl
Step 3: (In chip-repl) Commissioning OnNetwork
devCtrl.CommissionOnNetwork(1234,20202021) # Commission with NodeID 1234
Established secure session with Device
Commissioning complete
Out[2]: <chip.native.PyChipError object at 0x7f2432b16140>
Step 4: (In chip-repl) Read EVSE attributes
# Read from NodeID 1234, Endpoint 1, all attributes on EnergyEvse cluster
await devCtrl.ReadAttribute(1234,[(1, chip.clusters.EnergyEvse)])
{
│ 1: {
│ │ <class 'chip.clusters.Objects.EnergyEvse'>: {
│ │ │ <class 'chip.clusters.Attribute.DataVersion'>: 3790455237,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.ChargingEnabledUntil'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.FaultState'>: <FaultStateEnum.kNoError: 0>,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.NextChargeStartTime'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.StateOfCharge'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.MaximumChargeCurrent'>: 0,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.ApproximateEVEfficiency'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.BatteryCapacity'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.AcceptedCommandList'>: [
... │ │ ],
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.MinimumChargeCurrent'>: 6000,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.NextChargeTargetSoC'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.SessionDuration'>: 758415333,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.NumberOfWeeklyTargets'>: 0,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.FeatureMap'>: 1,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.GeneratedCommandList'>: [
...
│ │ │ ],
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.State'>: <StateEnum.kNotPluggedIn: 0>,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.SessionID'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.SessionEnergyCharged'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.VehicleID'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.NextChargeRequiredEnergy'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.SessionEnergyDischarged'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.AttributeList'>: [
... │ │ ],
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.NextChargeTargetTime'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.CircuitCapacity'>: 0,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.DischargingEnabledUntil'>: Null,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.SupplyState'>: <SupplyStateEnum.kDisabled: 0>,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.RandomizationDelayWindow'>: 600,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.MaximumDischargeCurrent'>: 0,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.NumberOfDailyTargets'>: 1,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.UserMaximumChargeCurrent'>: 80000,
│ │ │ <class 'chip.clusters.Objects.EnergyEvse.Attributes.ClusterRevision'>: 2
│ │ }
│ }
}
Step 5: Setting up a subscription so that attributes updates are sent automatically
reportingTimingParams = (3, 60) # MinInterval = 3s, MaxInterval = 60s
subscription = await devCtrl.ReadAttribute(1234,[(1, chip.clusters.EnergyEvse)], reportInterval=reportingTimingParams)
Step 6: Send an
EnableCharging
command which lasts for 60 seconds TheEnableCharging
takes an optionalchargingEnabledUntil
parameter which allows the charger to automatically disable itself at some preset time in the future. Note that it uses Epoch_s (which is from Jan 1 2000) which is a uint32_t in seconds.
from datetime import datetime, timezone, timedelta
epoch_end = int((datetime.now(tz=timezone.utc) + timedelta(seconds=60) - datetime(2000, 1, 1, 0, 0, 0, 0, timezone.utc)).total_seconds())
await devCtrl.SendCommand(1234, 1, chip.clusters.EnergyEvse.Commands.EnableCharging(chargingEnabledUntil=epoch_end,minimumChargeCurrent=2000,maximumChargeCurrent=25000),timedRequestTimeoutMs=3000)
The output should look like:
Attribute Changed:
{
│ 'Endpoint': 1,
│ 'Attribute': <class 'chip.clusters.Objects.EnergyEvse.Attributes.SupplyState'>,
│ 'Value': <SupplyStateEnum.kChargingEnabled: 1>
}
Attribute Changed:
{
│ 'Endpoint': 1,
│ 'Attribute': <class 'chip.clusters.Objects.EnergyEvse.Attributes.MinimumChargeCurrent'>,
│ 'Value': 2000
}
Attribute Changed:
{
│ 'Endpoint': 1,
│ 'Attribute': <class 'chip.clusters.Objects.EnergyEvse.Attributes.ChargingEnabledUntil'>,
│ 'Value': 758416066
}
After 60 seconds the charging should automatically become disabled:
Attribute Changed:
{
│ 'Endpoint': 1,
│ 'Attribute': <class 'chip.clusters.Objects.EnergyEvse.Attributes.SupplyState'>,
│ 'Value': <SupplyStateEnum.kDisabled: 0>
}
Attribute Changed:
{
│ 'Endpoint': 1,
│ 'Attribute': <class 'chip.clusters.Objects.EnergyEvse.Attributes.DischargingEnabledUntil'>,
│ 'Value': 0
}
Attribute Changed:
{
│ 'Endpoint': 1,
│ 'Attribute': <class 'chip.clusters.Objects.EnergyEvse.Attributes.MinimumChargeCurrent'>,
│ 'Value': 0
}
Attribute Changed:
{
│ 'Endpoint': 1,
│ 'Attribute': <class 'chip.clusters.Objects.EnergyEvse.Attributes.ChargingEnabledUntil'>,
│ 'Value': 0
}
Note that you can omit the chargingEnabledUntil
argument and it will charge
indefinitely.
Using chip-repl to Fake a charging session#
If you haven’t implemented a real EVSE but want to simulate plugging in an EV then you can use a few of the test event triggers to simulate these scenarios.
The test event triggers values can be found in: EnergyEvseTestEventTriggerHandler.h
0x0099000000000000 - Simulates the EVSE being installed on a 32A supply
0x0099000000000002 - Simulates the EVSE being plugged in (this should generate an
EVConnected
event)0x0099000000000004 - Simulates the EVSE requesting power
To send a test event trigger to the app, use the following commands (in chip-repl):
# send 1st event trigger to 'install' the EVSE on a 32A supply
await devCtrl.SendCommand(1234, 0, chip.clusters.GeneralDiagnostics.Commands.TestEventTrigger(enableKey=bytes([b for b in range(16)]), eventTrigger=0x0099000000000000))
# send 2nd event trigger to plug the EV in
await devCtrl.SendCommand(1234, 0, chip.clusters.GeneralDiagnostics.Commands.TestEventTrigger(enableKey=bytes([b for b in range(16)]), eventTrigger=0x0099000000000002))
Now send the enable charging command (omit the chargingEnabledUntil
arg this
time):
await devCtrl.SendCommand(1234, 1, chip.clusters.EnergyEvse.Commands.EnableCharging(minimumChargeCurrent=2000,maximumChargeCurrent=25000),timedRequestTimeoutMs=3000)
Now send the test event trigger to simulate the EV asking for demand:
# send 2nd event trigger to plug the EV in
await devCtrl.SendCommand(1234, 0, chip.clusters.GeneralDiagnostics.Commands.TestEventTrigger(enableKey=bytes([b for b in range(16)]), eventTrigger=0x0099000000000004))
# Read the events
await devCtrl.ReadEvent(1234,[(1, chip.clusters.EnergyEvse,1)])
[
│ EventReadResult(
│ │ Header=EventHeader(
│ │ │ EndpointId=1,
│ │ │ ClusterId=153,
│ │ │ EventId=0,
│ │ │ EventNumber=65538,
│ │ │ Priority=<EventPriority.INFO: 1>,
│ │ │ Timestamp=1705102500069,
│ │ │ TimestampType=<EventTimestampType.EPOCH: 1>
│ │ ),
│ │ Status=<Status.Success: 0>,
│ │ Data=EVConnected(
│ │ │ sessionID=0
│ │ )
│ ),
│ EventReadResult(
│ │ Header=EventHeader(
│ │ │ EndpointId=1,
│ │ │ ClusterId=153,
│ │ │ EventId=2,
│ │ │ EventNumber=65539,
│ │ │ Priority=<EventPriority.INFO: 1>,
│ │ │ Timestamp=1705102801764,
│ │ │ TimestampType=<EventTimestampType.EPOCH: 1>
│ │ ),
│ │ Status=<Status.Success: 0>,
│ │ Data=EnergyTransferStarted(
│ │ │ sessionID=0,
│ │ │ state=<StateEnum.kPluggedInCharging: 3>,
│ │ │ maximumCurrent=25000
│ │ )
│ )
]
We can see that the
EventNumber 65538
was sent when the vehicle was plugged in, and a newsessionID=0
was created.We can also see that the
EnergyTransferStarted
was sent inEventNumber 65539
What happens when we unplug the vehicle?
await devCtrl.SendCommand(1234, 0, chip.clusters.GeneralDiagnostics.Commands.TestEventTrigger(enableKey=bytes([b for b in range(16)]), eventTrigger=0x0099000000000001))
When we re-read the events:
[
│ EventReadResult(
│ │ Header=EventHeader(
│ │ │ EndpointId=1,
│ │ │ ClusterId=153,
│ │ │ EventId=3,
│ │ │ EventNumber=65540,
│ │ │ Priority=<EventPriority.INFO: 1>,
│ │ │ Timestamp=1705102996749,
│ │ │ TimestampType=<EventTimestampType.EPOCH: 1>
│ │ ),
│ │ Status=<Status.Success: 0>,
│ │ Data=EnergyTransferStopped(
│ │ │ sessionID=0,
│ │ │ state=<StateEnum.kPluggedInCharging: 3>,
│ │ │ reason=<EnergyTransferStoppedReasonEnum.kOther: 2>,
│ │ │ energyTransferred=0
│ │ )
│ ),
│ EventReadResult(
│ │ Header=EventHeader(
│ │ │ EndpointId=1,
│ │ │ ClusterId=153,
│ │ │ EventId=1,
│ │ │ EventNumber=65541,
│ │ │ Priority=<EventPriority.INFO: 1>,
│ │ │ Timestamp=1705102996749,
│ │ │ TimestampType=<EventTimestampType.EPOCH: 1>
│ │ ),
│ │ Status=<Status.Success: 0>,
│ │ Data=EVNotDetected(
│ │ │ sessionID=0,
│ │ │ state=<StateEnum.kPluggedInCharging: 3>,
│ │ │ sessionDuration=0,
│ │ │ sessionEnergyCharged=0,
│ │ │ sessionEnergyDischarged=0
│ │ )
│ )
]
In
EventNumber 65540
we had anEnergyTransferStopped
event with reasonkOther
.This was a rather abrupt end to a charging session (normally we would see the EVSE or EV decide to stop charging), but this demonstrates the cable being pulled out without a graceful charging shutdown.
In
EventNumber 65541
we had anEvNotDetected
event showing that the state waskPluggedInCharging
prior to the EV being not detected (normally in a graceful shutdown this would bekPluggedInNoDemand
orkPluggedInDemand
).